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WMEDANCE-MATCH AND ELEMENT-PATTERN
CONSTRAINTS FOR FINITE ARRAYS

INTRODUCTION

This report deals with an investigation of mutual coupling in finite and general an-
tenna arrays. The cost of large phaGed arrays and the need to make arrays conform to
streamlined contours have stimulated interest in arrays of modest size, On the other hand
the simplicity of the infinite-array model is so attractive, particularly in the case of regular
arrays, that the lower bound on the size of arrays for which this model may be usefully
applied is of great practical importance. The element pattern for a single excited element
of an infinite array (in the presence of the remaining elements terminated by loads) is
given by the classic formulas of Allen [1 and Hannan ([X,31. The limiting form of the
element pattern resulting when such an array is matched in impedance as a phased array
at all scan angles was given by Wasylkiwskyj and Kahn (41. Here thie limitn form of
the element pattern is obtained by direct calculation for finite arrays of general configura-
tion. For regular arrays, results obtained for the finite array confirm the lower bounds
on army size obtained from considerations of efficiency in finite-excited infinite arrays

o51. The infinite array closely models interior elements of arrays larger than 25 elements
along any diameter.

Good impedance match over a wide range of excitations for all scan angles is fre-
quently claimed, at Ieast as a design objective, for an amry antenna. A technique is de-
"veloped in the following for predicting the element patterns which would result if any
given array of antennas were appropriately matched in impedance by means of a lossless
feed network designed for this purplse. When the requirement for match is most broadly

*• I. interpreted, namely, as match for all excitations, the form of our result can be maticilmt.d
from the conservation of energy (6).

Consider an array of N mateanas as a dissipative N-port with input impedanev matrix
"-- 'Z R +iX. Assume the existence of a lossless 2N-ort which, it itisertJ between the
array and N generators with urdt intenal imp•dVnce, will have the unit matrix as its linut
impedance matuix. Designating the column matrix of cumrnts at the antenna ports by I
and tat at the input to the matching network by 1, Wte conservation of energy impbies
l~ g•- ..I i. The superscript t d(enotes the comj6x-cujugate transps mtrix. The loss.
less 2M-port must therefore effect the transformation BR1 121. The element patternsI of the array, matched for all excitations, may be computed from these currents. Thle
existence of a matching network was demonstrated by Baergfied (7) and BWrgfried and
Kahn [81. T1e analysis and computational results presnted here are based on a more
convenient network structue.

:., " Generlly im danne• mnatch for all excitations does not constitute an appropriat.

objective. This distincton between match for aH excitations mid an appropriate jwtial

MNmusipt &ub•,tU~d Mtardh 29. 1976.
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WALTER K. KAHN

match is essential in the application of this method to closely spaced arrays. For such
arrays the indiscriminate requirement of match for all excitations leads to difficulties in
tuning and excitation (and in computation) akin to those associated with supergain [91.
The excitations and element patterns derived using partial matching are not simply pre-

* dicted by the conservation of energy.

A uniform linear array of infinite line sources will be used to illustrate the general
theoretical results. Since the elements have infinite extent, this array must be considered
as a special case of a planar array; it is the simplest example of such an array. When the
computational results for closely spaced elements are studied, the effect of using an ap.
propriate partial match, as opposed to one for all excitations, is apparent. The element
patterns derived for appropriately matched finite arrays will be compared with those of

an infinite aray (the limiting case) obtained by an independent technique.

NETWORK PRELIMINARIES

Connections and Port Normalization Numbers

The desired excitation of a given array of antennas will be supplied from generators
with finite internal impedance through a lossless feed network. It is convenient to -be able
to view this interconnection either in terms of voltages and currents or alternatively in
terms of incident and reflected waves. In this section some aspects of the interconnection
process will be reviewed [10].

Vie interconnection of two 2-ports is shown in Fig. 1. In terms of voltage and cur-
rents with polarities, and directions shown in the diagram this interconnection clearly
requires

VM V',(a

From the diagram it would appear just as cle-arly for incident &A reflected wave anipl-

tudes a and b that

* I~'~ 1h3ta*42fcionnc-w 9t wo 2-PotlA

2
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a =b', (2a)

b = a'. (2b)

However, when these incident and reflected wave quantities are defined with respect to
complex normalization numbers, the defining relations being

2av'l - V + ZgI, (3a)

2bVyg= V- Z1I, (3b)

the relations (2) must be viewed with some caution.

Figure 2 presents the physical interpretation of the defining relation (3a). When
Eg 2aV•--, this relation is the Kirchhoff-loop equation for the circuit shown. Evidently
Z must have the value Z VI1. The average power transferred from the generator into Z
is, algebraically,

+ .;P =Re(V*/)- W,2- lb12 (4)

Thus maimum power is transferred to Z when b 0. From Eq. (3b) this implies

V((5), VT Z• 5

in agrment with the principle of conjugate impedance match.

Let us now chieck the co•nistmcy of relations (1) and (2). Dirmct substitution hi

(3) y el"s* - --( ,a

2a#'V'fl V, + Z;I, (6b)

UmThe relations are of the same forin as (3) extpt that Z4 replaces Zo. That is, the
- + .j +"evident" interconnection relations (2) Iold only when the •omplex normalu, to•n num-

bers Z8 and , are undotstood to be compkx co ajugugle of one atother.

Ve. 2-. quivsknt cirtuii for 1n1tpct-on,., .+ .,..{. ,a ,tuo r Ut&," aubrab

-4A-
3
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WALTER K. KAHN

In the sequel it will be assumed that the port normalization numbers Zg are either
real or that (when an identification such as b' with a is made) the appropriate conjugate
relation between the normalization numbers Zg is maintained.

Representations of the Scattering Matrix and Scattering.Transfer Matrix

The scattering matrix relates incident and reflected wave amplitudes. Corresponding
with an impedance matrix Z,

2RI/ 2b -(V- -Z*) (Z- Z*)I (7a)

V (V+ Zvi) (Z+ Z)I. (7b)

One eliminating I

ZR 2~ b (Z Z*)(Z+Z )- 12RI/2 a

or

b b [R - z_ )(Z+,,) IR/]8

S= ./[- -2Rgz + zg)"]R1/2a

21= - ,12(Z + Z,)-lit11] a

TIlie scatterag matrix

S R,;1 2(Z-z;)(z+Zgr"I'RS'*

I 1 - (8)

is symmetric if Z is symmetric, as is most a•sily seen from ttw rtcnid form of (8).

Consider the 20V-port network shown bi Mig. 3. The incident mid wflkotd wave
atuplitudes ate orderd into columa vec.tors a mnd b, so that

bn b ,,9a

a6._0 a2.... ON.-
and

I"::,3 = [0a g ,* 0 sN]2"~N (9c)

ao+i .. ~ ,+ ..0N 9

4
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(2)(N2

(3) GI~VEN (N*3)
2N-PORT

;' ~ Fig. 3-The reversed 2N-port

ZWPONT

in which *0. and cknato the row v.'rtori Whieh on- the tx~npose of tile eolujun vedi
d6 11d so~ rPespcvely, and whore t and denote tanillar row veetors. Ilion

A fMolt lowsel tvhateo8i the mcaeain 2X-poris ohtfs the no n-ot myti ifrw rotgie (10e.

Uenwcoluum vedors a' aid b'are

and
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a! (.5) a (l1b)

whore

1 0
Hence b = Sa implies b' ASAR-'a' or

~ (~ + (12)
Sr

m• t! "Note that in this instance

0 )
S(13)

Attention is now t).irned to the scattering-tavisfer ntatrix. The SctteniigAtansfer
mautrix of u giveit 2UN-port• e lat•s the amplitudes and b. with $a mid b2 (r•ettr tham

LaVId b. with and bp), where now a, mid b. ame ampiitudes L tssW'd with pots 1
through N of a suece•'ding I.-port connected to the given 2N-port at ports N + I Uixouahl
2N. llids i iUustrAted in Fig. 4, Thle scatteri6i sfer matrix To way also be found in

' 1 t4?rn of ut eleoteats of S. sy definiUw

TZ(; A (14)

: ! ', ::,:" i:: nd ro- (10) and Fig. 4

bbk

mid

lthe uattritig4muset matrix is obtaitted on olitxinating a from the above,

6
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2N-PORT

* 6

* 6

5, •

la.

ti -. -S ---- ----- ---Still • o il

L h u x W c w S c o - 0 /

Si :.! I( 1 6 )

When such a network is lkwle and tecptocL Uw stAAtring uatfix bebig thoWtow tuui-
* ~Wy and syumtwuIc,

" "7' I
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= Ia =~j~a*(17)

An appropriate interconnection of ideal transformers leads to a purely real scattering
matlix SMP = Sý0. It follows that such a network is "undone"' by cascade connection
with its reverse; that is,

TS Tiss 1 (18)

when Sp contains only real elements.

The scattering matrix of a 2N-port comprising a set of distinct lengths Qn of lossless
transmission line, each with characteristic impedance (resistance) equal to the correspond-
ing port (real) norralization number, is

/0
+r~ .- j (19a)

where 0is the real diagonal matrix

The corresponding scattering-transfer matrix is therfo~re

(20)

In genoral this niatsix Is not real; hesice casmling with its '"revetw-" does not "Undo" tOw
effett of Ute orignsl vi-nwork.

Consider the 2N.?Vport (20) to be Wrinitiutted by an AV-port withi scutwthwin wnalix S.
* 1From (10) one 1UU

I 0 (21

Il (22)
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EIGENWAVE ANALYSIS OF ARRAYS

Uniform Versus General Arrays

For sufficiently la-ge arrays the characteristics of the array (and in particular the
eigenvalues) ought to approach those of the infinite array in some sense. Since the eigen-
values for a uniform infinite array of reciprocal antennas are degenerate, we may expect
to see degeneracy or near degeneracy in thle large finite array. This degeneracy may cause
difficulty with some computational algorithms and certainly complicates perturbation
analyses.

The uniform circular array shares many of the features of large linear arrays. The
eigenvectors for large arrays approach those of the infinite linear aray, and the eigen-
values exhibit reciprocity degeneracy (irn pairs).

In comparison with uniform arrays of regularly spaced identical antennas, general
..rrays of nonuniformly spaced antennas have been little used. For this reason, and to
dispose of the complicating factor of near degeneracy of the eigenvalue problem to be
solved, this report focuses on the uniform case. This is accomplished through symmetry
analysis. From the standpoint of computation, then, each of the subspace arrays (odd
and even) of a uniform array constitutes a general array in which degeneracies arise only
accidentally. The straightforward analysis which is applicable in each subspace therefore
also covers the case of the general nonuniform array.

The uniform planar array and the circular cylindrical array generally possess a 1800
rotation, reflection, or equivalent symmetry. The eigenvalue problem may be separated
in accordance with the invariant subspaces of this symmetry. The formal analysis of this

* symmetry is taken up next.

""* -Twofold Symmetry Analysis

Consider a uniform linear or uniform circular array with ports numbered as shownj in Fig. 5 comprising N 2L + 1 elements. The twofold symmetry operation is represented
by tile. matrix

0 10. U

•~~ -i -! ...
f 0 I1 I0 (23)

operatiag or a coh-inn matrix of terminal quantities ordered as a,

a- =(a70 (24a)

7 7
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(2)

Fg. 5-Un~form nt ear armay and uniform circulAr array

where

ta-LaL~l .. a(24b)

and

ja a J aL-ja (24c)

2The tilde deno~tosthe trmispms. Thew L nsnionail submatrix l, is

/000 1

0 0 ... 1 0

10 .. 0 0

10
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The transformation of terminal quantities

5'a' a, (26)

where

0 (27)

0 CL
comnpletely reduces the symmetry operator 5.to the form Vf:

5.'1 1 0.. (28)

Note that J d (f.

The effect of the transformation 5.on the scattering matrix of an array will be illus-
trated for a di rcular array with.N = 5 elements and a linear atray with IV 3 elements.
For the circular array the scattering matrix has the form

S- Y C I - 2A

+ + ~ y~ -Y 'o

primed~~ 1rnia qwilte 0odn to2(2b)

j3-.7
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The scttering matrix *or a uniform array with N =3 elements has the form

~& where again the ports 9-.* numbered as shown in Fig. 5 and Eqs. (24). When transformed
Pý: to primed terminal quantities according to (26),

Consider now the conventiondl set of eiger .ectors for a circular array

t~)= 4 ) ,- ~ ~L, (31a)

a~nd

-I-exp E (3ib)

These also constitiute tha convent~onal form oil e-,cltatior- for the linear phaised armay,
although they are eigen';ectors of such anl array, only for thle case 9, m -~c.The latter
can be dedtaked fromr consderations of symmetry. The 'ron~piex-eonjugate elgenvectors

ore dge thate is, thle eigenvalues belongin tads~&cmpe le ctors (mn) and
(-m) are the same. The same paihixr is accompsLA - by the operator ~i 5also effects
a change of sign in the exponent it. Eq4. (31) through a cha go in th- sign of V.. It. fol.
lows Lhat

4 U11 (ai er)t , -L <-r L, ('12)

is also an eigenvector (po,%ibly tho same eigenvecter) oi the circulur or infinite linepr
array. Therefore these, new elgetivectors of tile arrity are by construction (a) rý,al and
(b) ei~cenvecton of1 A diffeteent labeling r. Is usually co'ivenlemt for the vectors 00'.
The-eormepondence of and md in s in any event est~blished by (32).

L I he eigetivectors of twae claiski as awilter even (belonging to the oigenvalue +1) or
odd (belonging to Uie eiganvalue -1)-. tile vector

is even, and the vector

12
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2~n (33b)

is odd.

The operators (1/2)(1 ± )of Eqs. (33) are readily shown to be projection operators
associated with orthogonal subspaces whose direct sum is the complete space. They are
projection operations (idempotent):

12 2

They are orthogonal:

And they are complete:

(~I+ Y) +.~(~-)=1 (34c)

To make these results concrete, the form of the matrix transformation which sorts
* ~out the eigenvectors according to the above scheme is computed explicitly. Rocal that

'S~~1 and that

00 U~n (35a)

therefore

The transformation Tf sorts any even portion of u( n) into the first L, + 1 rows of the vec-
tor u(" and any odd portion of ut") into the last L rows of u'Q When the matrix
product in (35b) is computed using the explicit representations of 5: (Eq. (23)). and
TS (Eq. (27)), one finds

1 0

f( f0 1 0 10 .(36b)

1~3
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From the placement of zeros in (36a) and (36b) it is clear that (1 + Jf) has projected out
the even part of t(m), so that the last L rows of u'(0) are necessarily zeros, and that (1 - )
has projected out only the odd part of tim), so that the first L + 1 rows of u'(") are nec-
essarily zeros.

In summary the preceding analysis shows that the degenerate eigenvalues of the cir-
cular and infinite linear array are split between the two invariant subspaces belonging to

and that the two separate reduced subspaces will contain only accidental degeneracies.
The eigenvectors u(n), properly renormaized where necessary, may be employed together
with straightforward nondegenerate perturbation theory to solve for the eigenvectors of
finite linear arrays.

CALCULATION OF ELEMENT PATTERNS FOR SUITABLY MATCHED ARRAYS

Excitation and the Radiation Fields

An elementary radiator of an array is usually specified in terms of its properties
when isolated from the array environment. In a dipole array, for example, the elementary
dipole is commonly specified in terms of the properties of the isolated dipole, This in-
formation is in general not sufficient to permit calculation of an element pattern in the
array environment. However, when all antennas but the one antenna element excited are
terminated in some fixed reactance, the element pattern in the array environment may be
nearly the same as the isolated antenna pattern. An array of small dipoles is one example.
"When all dipoles but one are open-circuited, the pattern of the single dipole is nearly that
of an isolated dipole. An array of slots in a large ground plane is another. When all slots

-* but one are short-circuited, the pattern of the single excited slot is nearly that of a single
slot in a ground plane. For canonical minimum-6cattering antennas [II] the element
patterns In the open-crcuited array environment coincide with the isolated-element pat-
terns. Without any restrictions on antenna type it will be assumed in this section that

nothe radiated field of a single excited element In the open-circuited-arry environment is a• !. "Imown. complex vector function of the direction angles 0 and

S(0),, -) ._(37)

and is normalized so thmt with unit incident power excitation the radiated power is

Prad= f 110)(O, 0)2 da'

t • I

'1~Z i+eac to (38)

4 where Z0 is the input impedance to the excited element mad dil is the element of solid
* ,': angle sin 0 dOdto. A common altenative normalization fixes on the radiation amplitude

produced by a unit input current; this field will be distinguished by an I subscript, fi(O,4).
..1 corresponding power normalization is then

14

,7"- " :" ' , , , , . v
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P1d f1f)0 )2f eZ,(9
Since for this open-cicuit-environment condition

2V1Z~ga= V +ZgI

Vo Z+ Zg)I, (40)

it follows that

(0, 0 0)(, 0)(41)

In the special case Z=Z'

(0, ) 1o)(0 0)(42)

Since 170(0, 0)1, is the pattern radiated by the nth element when all the remaining
curens ae ero(oencircuit condition), one may employ straightforward superposition

to obtain the field for any set of currents. In particular, if the correct 1In corresponding
.... .;.to matched terminations at each element have been found from the mutual coupling

constraints (V -ZI )r b =So), then the field radiated by some element in the terminated
A array environment for that element is

ho 0)(,01

ne-L

zois)0 0)1. (43)

In the terminatod-array environment the correct currents produced by a real generator
are most easily expressed in terms of scattering quantities

S"M~aM(44)

San

P ucew the difference between the open-circuit conditions (40) and the terminated-port,
condition expressed by (44). Using (44),
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zon + L

The Modified Array

The Input impedance matrix for an array of antennas, considered as a dissipative
N-port, generally has both resistive components Rm and reactive components Xmn:

where

ZM n R M n AMjX

envronentthrughtheconervtio ofenergy:

The imaginary components have no such unique relationship with the pattemns, although
in special cases the imaginary components may be connected with the analytic continua-
tion of the real patterns into the comnplex angular domain [I1I]. These reactive compo-
nents may obviously be canceled through a lossless reactance network, one form of which
is shown as

jB I[mj +cR 2X".)

in Fig. 0 and is descrbod in more detail subsequently. The combination of the armay plus
this cancellation network is termed the modifted army. The modified array has tho real

inutimedance matrix R -(Rmn).

The loauless reactance cancellation network In Fig. 6 is formed by attachment of
¶ ~quarter wavelengths of tranmission line ait each antenna port. If the transmission Oines

all have the same characteristic impedance Re, then the input shortdcrcuit admittance
matrix of the armay plus transmission lines is

-22 (8

At this point then the shunt suaceptanct. network ID -j 1n V is connected to produce
4 the desired cancellation effect. noa addition of a second set of quarter-wavelength trans-

misson lines, also of characteristic impedance Re, reconverts the reidual real part of the
admittance matrix, Re Y, into the impedance matrix R IRMA) R2 He y.

16t
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ANTENNA ARRAY

T0

$0I

INPUJT TO MODIFIED ARRAY

F~ig. 6-Modifiedarmay

tvatching Networkfor the Modified Linam Arry

The general scheme of the matching network which will be employed in our calcula-
tions is shown in Mig. 7. Therm are three main sections. the first section (drawn as three
large rectangles) is a real transparent 2N-port, the second section (drawn as N small rec-
tangles) consists of N disjoint lossless two-ports, and the third section (drawn as4 three
UVrg reotangles -a mirror image Of( the first section) is a real transparent 2NV-port-the
"'reverse" of the tinst section. If the two-ports of the second section were just. direct con-
nections, the first and third sectons would "undo" one another. Excitation supplied at
the left then would appea at the cortmepondingly labeled antenna Input port at the right..
This apparently trivial point of notation is essential to preserve the physical algnificence
of out results. We now specify each of these sectios fit more detail.

The lage rectangle of the first section of Fig. 7 separates all array excitations into

j ~even and odd portions as discussed earlier. The scattering matrix of this 2N-port [121 is

S (49)

where '.the transformation (26), is such that

.. , *. *.. .~f1

up.
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-L+1 L+2 2 0.3 L+3 2 L.42 -041

- .-I 2Le- L. 2L.-I 21&-I L- 2LNt 1-I-

-0 2= (5) 0

The 2atr+2 ~ 2()adS.Lr+teee2n d ubarcso h ntnaaysat

0/

Telgmaetoricsof+ad r the even and odd subcte~gmatricer, of th and oa-my satbterar

Sy) ma(tr(xib.

The two saller rstatges i ste rvre of the first section.hv h ( )b-( )satr

aeind ts he w In rg. 8 T scatteinmarix gmti fti rnfrmrnadlgscimI

181b

. *.-~'.
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IMPEDANCE 2 IMPEDANCE

R9 ~ Q't n))t

Fig. 8-TYPlCA~ tr.atdoirnr eiAUtcing 2-port

p(±n (53)Qri )+ Rg

The notaition Q,(±, ni) refers to the input impedance at the nth even ()or nth odd(-
miatching two-port, which is connete~d between the two nth output port& of the networks
S(t) aid its reverse. Q,(±, n) is, by construction, the nthbve or nth odd eigenvahie o
the modified antenna array resistance niattix R. o

For an incident Wave 02 at terminal 2 of a miatching 2.pod, a wave amplitude b, is
generated at t~ermnaxul I in accordance with (52);

b a+I- 6a
As arrngd, b, 0, which means that

VIL -p -, - a2;(64b)

hence

( 2 + V/ P2)

02 (64c)

Ibis Is the wave which is incident on the first.~co potbralsina nietwv

on the modified armay of e(1 p 02o, where 0 is the eigenvector of R correspondinig
to the port excited by 42. At the po&Uof the modiW anay it refLecWe wave, p timos

4NIL
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the incident wave, is generated. The cunents (44) at the modified armay, proportional to
<.. the difference of incident and reflected amplitudes, are elements of the column matrix

-* IP 1 /2 (1 - p)9(1 p2) 1 1 2a2  (55)

The elgenvectors of the scattering matrix of the modified array S can be calculated
from the eigenvectors of -S(i). If the matrix eigenvectora, of S(+) is &()and of S(-) is

that is,

((,1)o(+, 2) .. (+. L + 1)] (56a)

(-,1)0(-, 2) ., (,L)j ,(56b)

then

e= [-L)e(-L +1)..e(O)..e(L)I

With these definitions, for arbitrary input a to the matching network, Fig.~ 7, the
currents at the inputs to the modified array are

'AI -b (BU)

[ -p) (I p2) -I 2 a

I(,_ p)(1 + pyl 1112ge (58b)

where p is now the diaonal matrix

p =diag tp(-L), .. ,p(O), ... p(Lfl (6%.)

A and he matrix Qris Siven by

Frwom the definition of S, f!r8b) masy be rewritten

am antiip(t0)
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Partial Match of the Amy1< Although an array can be matched for almost all excitations by means of the feed
network developed in the preceding paragraphs, an exceptional circumstance occurs when
one of the eigenvalues of the resistance matrix is zero or infinite. This can happen with
an array of lossless antenna elements which actually fail to radiate aid therefore present

apurely reactive impedance, which case is excluded from further consideration because
of its triviality. Even with an array of bona-fide antennas (antennas which are not purely
reactive) this exceptional circumstance can occur "accidentally. " By th is is meant an
occurrence which can be removed simply by an infinitesimal perturbation of the array.
Again, this is of little interest here. However for larg closely-spaced regular arays a set
of small (or large) eigenvalues occurs in a nonaccidental fashion which consequently is of
physical interest.

As has already been mentioned, the characteristics of a large finite array approach
those of the infinite array. In the hiflnite-array model elgenexcitations produce either
delta-function beams (visible region) or no beams at all (invisible regon) [13). The active
impedance (eigenvalue) corresponding to an excitation which does not place a beam in
visible space i purely reactive. The large finite amay with the same spacing does riot
preserve this absolute distinction between visible and invisible regions, because the patterns
of any ftitij array are not indefinitely narrow. Some energy is directedl along almost all
real anglies. An excitation which would produce hinphase addition only at complex angles
(in the invisible region) bi the case of finite arrays radiate. into visible space through a
sidelobe. However the active ioput reistance corresponding to this condition is much
smaller or larger thani unity or fig. Attempts to realize match in these esses are subject
to limitaktions closely akin to those msociated with the realization of supergan [9). Thils
aspect of the matc problom will be illustrated later.

T'he matching network, Figs. 7 and 8, leave the correspondhig elgmenextation wi
affcte whm te trnsrato of the transormer twoipr (Fig. 8) carrnponding to that

partiular ciolecitatloii is replaced by a straight co-nnection or equivaently the turnn
ratio is set ciqual to unity, w - 1. A wave a Iincident at the in~put to thUis tuaon ner
produces wave smplitudes val incident on the modified arry, * being the c I~V itor of
S involved. 'Me correponding currets exciting the modifted arMa (44) are then
itilI26(1 p)G1. In general Uwretore (58) must be replaced by

diag[. Q; 12 n,, ,()~F (62a)
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In Eqs. (62) it is understood that the first excpression within the brackets applies to eigen-
excitations (eigenvalues) that are matched and the second applies to eigenvalues that are
not watched. The currents (61) are now no longer simply related to .R112 and cannot be

found simply from energy considerations.

APPLICATION AND EXAMPLES apidt io niieI

The preceding theory will now be aple oa lnear arrmy ofifnt ne sources.
The theory ie in no way limited to uniform arrays, nor are the computations appreciably
simplified by the assumption of uniformity. Uniform arrays are chosen because of their
practical importance and because the comparison of the finite-array result with those ob-
tained for the corresponding infinite array [4) is of special interest. Pertinet results ob-

* tained in Ref. 4 are summarized in Appendix A for convenience.

Consider an array of fine sources distributed along the x axis of a Cartesian coordi
nate system, each line source being of ikifinite extent and para"e to the z axis. The pat-
tern of an individual line-source element is isotropic in the xy plane. The line source may
be one of electric current (in which case the electric vec-tor is polarized along the Z axis),
or the line source may be one of magnetic current, simulating a narrow Blot in a conduct-

coupling between such elements may be computed on the assumption of a single-mode

J element 1141 or a canonical minmum-camttering antenina 111). The result for eitherf polarization is (at appropriate referenoe planes) (111

-i)( Ix I).l) m Oin # (63)

wrexis the coordlinate st which tho line xoutm necpate xs i 2

Ittnikel ttmncurn~ ot the second kind wid wwrth mtrter, mid k~ 6 the. wave number, 2V/X,
The impedance mAtx of the "modified an~y opie h c)eeet

wiwre denotes the Beaswl function of th tugs kind and smroll order.

Pigure 9 %howsV Qlament JAWtrsi itheteinated-axry environment for the centr
eleentsA of uniform arrays as dottd Dones. The elements )f the array wr kD -a radlan.
apart, avid the arays coist respecti .1y. of 6, 16, and 25 eleens Ln wacs th
center element is excited by an incident wave carying unit 1oe. I oprn the re-I s~~~~~ults obtained with those for the infiniteavy(pedxA t utb eebrdta
the bfnite-army formulas are conventionally quoWe for xtdiation into a taltfpace. Ae-
count of this is takim it ýJw directly compumted absolute power patterns ame mupljied by

a fact~or of" Pt oortnuty of Intentation bobi the- finite~arry pattems aod the
nfadte-*nay pattern wete further divided by Wis. Thils has theefcto omlzn

tOw elemniet pattern for smy spcing. The normauised infinite-amay element pattern Is

22
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shown as a solid line. It is clear that the elemenit pattern for a watched array approaches
the wi~nite-array result. The approach Ns osclllato.L- (after the fashion of trigonometric
series) rather thsn smooth. For N = 25 element's Cie pattern closely follows the infinite-
aray result except in~ the immediate neighborhood of radiation along the plane of the
array, 0 = 900. Thi result is in agreement with the e:ýpectattions based on element ef-

'K ficiency (31.
Only half of each element pattern is shown in each c;*se, b~ecause the power patterns

are symmetric wlt'n resý*et to 8 = 0. In the case of Unewar or planar arrays, this symmetry
is always a fetiure of ~optimally) matched element patterns, since the currnt exciting
each element of thj ras:Uating aperture are real (either in phase or 1 80 out of phase.)
That these cm.r'ents are indeed real is evident from (60) or (61), for a = n [62 that ie,

when -only the Rth input to the feezl network is excited by a unit incident wave.

The element pattern in the terminated-mray environment for an edge element of the
N 26 arry is shown in Pg. 10. Its shape is somewhat broadened when referred to a
cos 0 pattern and the peak gain is reduced approximately 0.7 dB.

Element patterns in the terminated-6iray environment for an array of N 25 ele-
ments spaced kDL) 4.0 radians apart are shown in Fig. 11. The element pattern for the
center ebment is shown in Fig. Ila, and the vdge effect present at this spacing is dis-
played in Figs, lib, Ice, and 11d. The cent-r-element pattern in Fig. Ila displays a close
oscillatory approach to the infinite-array elemert pattern. The sharp break to a null at
34.80 in the infinite-array elmrent pattern associated with the entry of a grating lobe is
evident also in the finilce~array patterns. Of course the finitearry element patterns &j
not have an absolute null. As before, the largest deviations occur in the riighborhood of
the array face (0 = 900). The peak gain of the edge elemeazi (Fig. lib) is reduc.ed by ap-
proximately 0.8 dB. In the second and third element from the edf- of the array (Figs..
hIc and lI1d) the sharpness of the features associated with entry of thie grating lobe appear

I0 , I I

0020 30 40 BOS 70 To0 to
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GORATING LOBE. NULL. AT 34.8 1.
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somewhat smoothed. The overall effect of this smoothing is to narrow the main lobe of
the element pattern.

4 "In the preceding examples it was feasible to match the arrays for all excitations; that
is, Eq. (60) could be employed to compute the currents exciting the modified array. For

spacingp kD < r we must be prepared to implement an appropriate partial match.

Consider now a closely spaced array of line sources, with elements spaced kD =2.0

radians apart. The eigenvalues of the mutual-resistance matrix for the modified array are
listed in Table 1. It is clear that some of these eigenvalues imply active reflection coef.
ficients differing in magnitude only slightly from unity. This is in accordance with our
expectations based on the infinite-array model. In an infinite array with this close spbcing
there is a continuum of (eigen) excitations for which the active reflection coefficient ntc-

.. essarily has unit magnitude.

Figure 12a shows the element pattern in the terminated array environment for the
center element of the array when the array is matched for all those eigenexcitations 'or
which the eigenreflection-coefficient magnitude is lp(n)[ < 0.5. The corresponding range
of eigenvalues of the mutual-resistance matrix is 0.33 < Qr(n) < 3.0. The remainingS....-: 'eigenexcitations of the modified array are li•ft undisturbed. The eigenvalues which were
left unmatched are italicized in Table 1. Consequently 15 of the 25 eigenexcitations
were matched to achieve the pattern shown in Fig. 12a. Note that 15 is nearly the nuMo-
ber of half wavelengths in the aperture: NkD/ir = 15.91. The fraction of elements which
"may readily be matched is approximately equal to the ideal element efficiency of the cot-
responding infinite array, 1 = kDlr [5,91.

Figures 12b and 12c show the same element pattern when tolerances on the eigen-
values of the resistance matrix Q,(n) are respectively 0.05 < Qr(n) < 20 and 0.001 <
Q,(n) < 1000. These tolerances correspond to ignoring eigenreflection-coefficient mag-
nitudes Ip(n)l > 0.9 and lp(n)l > 0.998. When all eigenvalues are matched, a pattern
"with wide oscillations results (Fig. 12d). As total match for all excitations is approached,
the pattern oscillations widen, and a large lobe spils over into visible space near 900.

Thus the difficulties associated with matching extreme values of the active resistance
Q,(n) are akin to those involved in the attainment of supergain. Supergain is evidenced

Table 1 -The 25 Eigenvalues Q,(n) of the Mutual-Resistance Matrix for a Linear
Array of Line Sources With N = 25 Elements Spaced kD = 2.0 Radians Apart

(The eigenvalues in italics are outside the range 0.33 < Q,(n) < 3.0)

3.28225 1.41119 1.07501 1.00214 6.23879 X 10-

3.18452 1.26061 1.05742 0.862315 2.23549 X 10-O

1.85831 1.22749 1.03141 1.83745X 10-1 5.43821 X 10-8

. 1 1.79140 1.14601 1.01912 1.83886 X 10" 3.88444 X 10"

1.45741 1.12175 1.00769 1.25242 10-3 1.94222 X 10-9
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even in the element patterns. The power pattern for an element of the infinite array, as
computed from Hannan's formula, attributes to each element the normal gain kD cos 0
associated with the area per array element [2]. (For the linear array 2wD/?A replaces the
planar-ray expression 4WA/V 2 .) Thus power radiated in excess of the power per radian
predicted by Hannan's formula (the solid line in Fig. 12) represents the degree of super-

" T gain attained. This excess is slight as long as the active impedance mismatch (eigenre-
flection coefficients) tuned out are modest.

DISCUSSION AND CONCLUSIONS

The wider implications of the results presented in this report lie in confirmation that
constraints on array performance predicted by the relatively simple infinite-rray model
effectively operate as constraints on the performance of finite arrays in a manner and to
an extent illustrated by the detailed calculations presented. These constraints limit the
attainable element patterns, including specific features of these such as grating-lobe nulls,
and limit the attainable reduction of mutual coupling among antennas by appropriate
feed network design. Confirmation of the effectiveness of these constraints in finite
arrays is required, since the reasoning employed to establish them in the case of the infi-
nate aray cannot be carried over to the finite case. Indeed the general physical grounds
for the constraints disappear in the finite array. These physical grounds are replaced by
more complex and special mutual-coupling effects. Consequently the phrase "effective-

* h ness of the constraints" is used.

Reasoning based on the conservation of energy and symmetry shows that the pattern
of a single element excited by a unit incident wave in the environment of an infinite regu-
lar planar array of identical terminated elements must satisfy [2,3]

""O < Co !.(6

In particular equality can hold only in the matched cae, when the active reflection coef-

ficient (for all elements excited with uniform amplitude and linear phase) is zero. The
. form of the element pattern for a matched infinite array Is given explicitly by Eq. (Al)

of Appendix A. The generality of the physical grounds is such that (65) applies inde-
a pendent of the type of antenna elements employed. This limitation is particularly severe

at wide angles (0 % v/2) in that it entirely precludes radiation parallel to the plane of the
array. The finite arrays of line sources used as examples constitute a particularly rigorous
test of this prediction from the infinite-array model, since individually the line-source
elements radiate isotropically in the plane normal to the line source.

Figure 9 shows the extent to which this infinite-array constraint remains effective.
As is also possible in the case of an infinite array with spacing kDx = ir, where Dx - X/2,
each finite army is matched for all excitations of the array. Obviously the constraint
would not apply at all to an array consisting of only a single element. Yet for an array
of only five elements the center element clearly shows the predicted generic behavior. As
one expects, when the number of elements in the army becomes larger, the effectiveness

i4i |of the constraint increames. Figure 10 shows that even in an edge element the pattern is
strongly modified in the direction predicted by the infinite-array model.

28

.I Now.



NRL REPORT 8002

The element pattern may display relatively sharp dips or nulls. In the infinite-army
model these may be classed as either necessary nulls or removable nulls [4). The l.tter
nulls are removable in the sense that a feed network exists which can in principle -Ine
out these nulls. The location of necessary nulls in the element pata is found on con-
sidering the operation of the antenna as a phased army. Such a nuli may occur in the
direction indicated by the main lobe whenever a grating lobe just enters visible space
(Appendix A). Figure 11a shows how this feature is effectively reproduced by the center
element of a finite array of 25 elements. Again, even the edge element of the same array

S . (Fig. 10b) shows the influence of this null, even though the infinite-array model cannot
be expected to apply quantitatively near an array edge.

For closely spaced arrays the infinite-army constraints require zero radiation for cer-
tain excitations of the array. As has been stated, the general physical grounds for these
constraints do not carry over to finite arrays. Thus the finite array can radiate (and can
therefore in principle be matched) for all excitations. When this match is in fact at-
tempted, that is, when the high degree of mismatch which replaces the absolute infinite-
army constraint is tuned out, the correspondence with the infinite-array model is lost.
This is illustrated by the element patterns shown in Fig. 12. In Fig. 12a only small mis-
matches are tuned out, whereas in Fig. 12d match for all excitations has been obtained
in contradiction to the constraints of the infinite-array model. Figures 12b and 12c show
various stages between these extremes. In Fig. 12d, as expected, correspondence with the
infinite-array model is largely lost. In particular the element produces substantial radia-
tion directed along the array. The generally unsatisfactory nature of this pattern com-
mends acceptance of the constraints of the infinite-array model in setting design objectives
for practical arrays.

The patterns shown in Fig. 11a suggest another application for suitably matched
arrays, Appropriate placement of the necessary nulls synthesizes a pattern which Is nearly
constant interior to the nulls and is reduced by 5 dB in the region outside the null, van-
islhing along the army face.
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Appendix A

ELEMENT PATTERNS OF A MATCHED INFINITE ARRAY

A single element of an infirite planar lattice of identical elements is excited by a
unit incident wave. The remaining elements (or their corresponding ports at the input to
an interconnecting feed network) are terminated. The feed network has been adjusted or
tuned so that, if all elements were excited with uniform amplitude and linear progressive
phase, the array would be matched at all scan angles. The element pattern produced
under these conditions was found in Ref. 4. A simplified planar array may be constructed
as a linear array of sources, each of which has an infinite extent in the direction normal
to the array axis. For this special case the resulting element pattern is given by

<1 ~P(O) (CosO0) [1 + PO)(s8(Al)
r~* 

P•[ o (O), Zoso 6M

where

P(0) = the limiting element pattern in the terminated-array environment obtained
when the array is matched,

P(O)= any element pattern in an arbitrarily terminated environment such as, e.g.,
the pattern of a single excited element of the original (unmatched) array
when all other elements are open-circuited,

0 = pattern angle measured from the z axis (in the xz plane), 0 0 0O,

""0, -- grating-lobe pattern angle defined by the equation

si M Gn0 Mm ±1, ±2, . (A2)

A4 spacing along the x axis, and

W wavelength.

The summation In Eq. (Al) extends over all real angles 0m, m ±1, ±2, ... , that Is, those
alV ues of m, m# 0, such that

The moat significant feature of Eq. (Al) resides in the singularities of the term

31



WALTER K. KAHN

L (M) Cos (A4

If W* PO) CSm

The ratios P(Om)IP(0) are shown to be invariant, that is, the same for any element pattern
of a given antenna element independent of termination or (uniform) interconnecting feed
network. Each singularity of (A4) corresponds to a necessary null of the element pattern
in the terminated-array environment.
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